New deformed Heisenberg oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L233
(http://iopscience.iop.org/0305-4470/26/5/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:26

Please note that terms and conditions apply.

LETTER TO THE EDITOR

New deformed Heisenberg oscillator

Abstract

A Jannussis \dagger Max-Planck-Institut für Plasmaphysik, D-8046, Garching, Federal Republic of Germany, and the Institute for Basic Research, PO Box 1577, Palm Harbor, FL 34682-1577, USA

Received 23 October 1992

Abstract

The discrete spectrum of a deformed oscillator is calculated here for the first time according to the non-canonical Heisenberg algebra. The spectrum extends from $\hbar \omega / 2(1+\mu)$ to $\hbar \omega / \mu$, where μ is a positive deformation parameter.

It is well known that the usual (canonical) commutation relations between the position and momentum operators, x and p, were introduced by Heisenberg. It is less well known, however, that, three decades ago, Heisenberg himself proposed generalizing the commutation rules to a non-canonical form [1]. This new idea by Heisenberg was subsequently developed by some authors [2-5] and applied to various physical problems.

A specific form of non-canonical commutation relation for x and p has the following form

$$
\begin{equation*}
[x, p]=i \hbar f(H) \tag{1}
\end{equation*}
$$

where $f(H)$ is an arbitrary Hermitian function of the Hamiltonian H.
Recently, Janussis [6] proved that the deformation Q-Lie algebra is a particular case of a Lie-admissible algebra. The time evolution of the operators of the Q-oscillators was derived for the first time by exploiting the connection between the Q-deformation algebra and the Lie-admissible algebras [7].

According to Santilli [8], the new commutation rules for the Lie-admissible algebras have the following form:

$$
\begin{equation*}
x T p-p R x=i \hbar \Omega(x, p, t, \ldots) \tag{2}
\end{equation*}
$$

where T, R are suitable operators (supposed to present, in general, non-conservative interactions) and $\Omega(x, p, t, \ldots)$ is the operational form of the Lie-admissible tensor.

It can be seen from the above generalization that Heisenberg's non-canonical commutation relation (1) is a particular case of (2) for $T=R=1$ and $\Omega(x, p, t, \ldots)=$ $f(H)$. Also the connection between quantum groups and Lie-admissible Q-algebras has been extensively studied in [6]. Moreover, Janusis and collaborators introduced the generalized commutation relation $[6,7]$

$$
\begin{equation*}
\left(A, A^{+}\right)=A A^{+}-A^{+} Q A=F(\hat{n}) \tag{3}
\end{equation*}
$$

where \hat{n} is the usual number operator $|\hat{n}| n\rangle=n|n\rangle$ satisfying the commutation rules

$$
\begin{equation*}
[A, \hat{n}]=A \quad\left[A^{+}, \hat{n}\right]=-A^{+} \tag{4}
\end{equation*}
$$

\ddagger On leave from Department of Physics, Patras University, Patras 26110, Greece.
and $F(\hat{n})$ is a suitable function. In the same way we can study the Lie-admissible commutation relation

$$
\begin{equation*}
\left(A, A^{+}\right)=A T(\hat{n}) A^{+}-A^{+} R(\hat{n}) A=1 \tag{5}
\end{equation*}
$$

where the operators $T(\hat{n})$ and $R(\hat{n})$ are Hermitian. In the present letter we study the cases

$$
\begin{equation*}
T(\hat{n})=f(\hat{n}+1) \quad R(\hat{n})=Q f(\hat{n}+2) \tag{6}
\end{equation*}
$$

where $f(\hat{n}+1)$ is a suitable function and $(Q \in[-1,+\infty], Q \neq 0)$.
We apply the bosonization method $[5,9]$ and seek A, A^{+}in the form

$$
\begin{equation*}
A=G(\hat{n}+1) a \quad A^{+}=a^{+} G(\hat{n}+1) \tag{7}
\end{equation*}
$$

and $a, a^{+}, a^{+} a=\hat{n}$ are boson operators satisfying the usual commutation relations. Then, from (6) we get for the operator $G(\hat{n})$

$$
\begin{equation*}
(\hat{n}+1) f(\hat{n}+2) G^{2}(\hat{n}+1)-Q \hat{n} f(\hat{n}+1) G^{2}(\hat{n})=1 . \tag{8}
\end{equation*}
$$

The solution of the above equation has the form

$$
\begin{equation*}
G(\hat{n}+1)=\sqrt{\frac{[\hat{n}+1]}{(\hat{n}+1) f(\hat{n}+2)}} \tag{9}
\end{equation*}
$$

and the relations (7) yield

$$
\begin{equation*}
A=\sqrt{\frac{[\hat{n}+1]}{(\hat{n}+1) f(\hat{n}+2)}} a \quad A^{+}=a^{+} \sqrt{\frac{[\hat{n}+1]}{(\hat{n}+1) f(\hat{n}+2)}} \tag{10}
\end{equation*}
$$

where

$$
[K]=\frac{Q^{K}-1}{Q-1} .
$$

From the above relations we obtain

$$
\begin{align*}
& A A^{+}=\frac{[\hat{n}+1]}{f(\hat{n}+2)} \quad A^{+} A=\frac{[\hat{n}]}{f(\hat{n}+1)} \tag{11}\\
& {\left[A, A^{+}\right]=\frac{[\hat{n}+1]}{f(\hat{n}+2)}-\frac{[\hat{n}]}{f(\hat{n}+1)}} \tag{12}\\
& \left\{A, A^{+}\right\}=A A^{+}+A^{+} A=\frac{[\hat{n}+1]}{f(\hat{n}+2)}+\frac{[\hat{n}]}{f(\hat{n}+1)} . \tag{12a}
\end{align*}
$$

According to Jannussis et al [5], the Fock representation of the operators x and p in the forms of A, A^{+}reads in this case

$$
\begin{align*}
& x=\frac{1}{2} \sqrt{\frac{\hbar(Q+1)}{m \omega}}\left(A+A^{+}\right) \tag{13}\\
& p=-\frac{\mathrm{i}}{2} \sqrt{\hbar m \omega(Q+1)}\left(A-A^{+}\right) \tag{14}
\end{align*}
$$

and the Hamilton operator of the harmonic oscillator takes the form

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{m}{2} \omega^{2} x^{2}=\frac{\hbar \omega(Q+1)}{4}\left(A A^{+}+A^{+} A\right) . \tag{15}
\end{equation*}
$$

Furthermore, the operators $A^{+} A$ and \hat{n} commute, i.e.

$$
\begin{equation*}
\left[A^{+} A, \hat{n}\right]=0 \tag{16}
\end{equation*}
$$

and have the common basis $|n\rangle,\langle l \mid n\rangle=\delta_{l n}$ of bosons. Acting on $|n\rangle$ with A and A^{+}gives

$$
\begin{align*}
& A|n\rangle=\sqrt{\frac{[n]}{f(n+1)}}|n-1\rangle \tag{17}\\
& A^{+}|n\rangle=\sqrt{\frac{[n+1]}{f(n+2)}}|n+1\rangle \tag{18}\\
& A^{+} A|n\rangle=\frac{[n]}{f(n+1)}|n\rangle \tag{19}
\end{align*}
$$

and for $f(K) \neq 0, K=1,2, \ldots$ the operators A and A^{+}are exactly annibilation and creation operators. From (12a) and (15) we obtain the eigenvalues of the Hamiltonian operator H, i.e.

$$
\begin{equation*}
H|n\rangle=\frac{\hbar \omega(Q+1)}{4}\left(\frac{[n+1]}{f(n+2)}+\frac{[n]}{f(n+1)}\right)|n\rangle \tag{20}
\end{equation*}
$$

which in the case $f(\hat{n}+1)=1$ reduces to the spectrum of the Q-harmonic oscillator [5,9]. Also from (20) we obtain for $Q=1$ the eigenvalues

$$
\begin{equation*}
H|n\rangle=\frac{\hbar \omega}{2}\left(\frac{n+1}{f(n+2)}+\frac{n}{f(n+1)}\right)|n\rangle \tag{21}
\end{equation*}
$$

An interesting case is $f(n+1)=1+\mu n, \mu>0$, for which the eigenvalues take the form

$$
\begin{equation*}
H|n\rangle=\frac{\hbar \omega}{2}\left(\frac{n+1}{1+\mu(n+1)}+\frac{n}{1+\mu n)}\right)|n\rangle=E_{n}|n\rangle \tag{22}
\end{equation*}
$$

In the following, we will call the above oscillator the 'deformed Heisenberg oscillator', since its discrete spectrum'extends from the ground energy $E_{0}=\hbar \omega / 2(1+\mu)$ to the upper limit energy $E_{\infty}=\hbar \omega / \mu$.

To our knowledge, this is the first time where an oscillator spectrum bounded from above is presented. The nature of the above spectrum is a direct consequence of the introduction of the parameter μ in the non-canonical commutation relation of the deformed Heisenberg algebra. The operator

$$
\begin{equation*}
H=\frac{\hbar \omega}{2}\left(\frac{\hat{n}+1}{1+\mu(\hat{n}+1)}+\frac{\hat{n}}{1+\mu \hat{n})}\right) \tag{23}
\end{equation*}
$$

takes the following form (for $\hat{n}=H_{0} / \hbar \omega-\frac{1}{2}$):

$$
\begin{equation*}
H=\frac{\hbar \omega}{2}\left(\frac{H_{0} / \hbar \omega+\frac{1}{2}}{1+\mu\left(H_{0} / \hbar \omega+\frac{1}{2}\right)}+\frac{H_{0} / \hbar \omega-\frac{1}{2}}{1+\mu\left(H_{0} / \hbar \omega-\frac{1}{2}\right)}\right) \tag{24}
\end{equation*}
$$

where $H_{0}=\hbar \omega\left(\hat{n}+\frac{1}{2}\right)$ is the Hamiltonian of the usual harmonic oscillator.
After some algebra the commutator of the operators x and p can be written

$$
\begin{equation*}
[x, p]=\mathrm{i} \hbar \frac{2(1-\mu H / \hbar \omega)^{2}}{1+\sqrt{1+\mu^{2}(1-\mu H / \hbar \omega)^{2}}} \tag{25}
\end{equation*}
$$

which is a particular case of the non-canonical commutation relation (1). The above commutation for $\mu=0$ reduces exactly to the usual canonical form.

Before constructing the corresponding quantum group we generalize the commutation relation (25) to n dimensions, i.e.

$$
\begin{equation*}
A_{j}\left(1+\mu, \delta_{j k} \hat{n}_{j}\right) A_{k}^{+}-A_{k}^{+}\left(1+\mu_{k} \delta_{j k}\left(\hat{n}_{k}+1\right)\right) A_{j}=\delta_{j k} \tag{26}
\end{equation*}
$$

From the above relations we obtain

$$
\begin{align*}
& A_{j} A_{k}^{+}=A_{k}^{+} A_{j} \quad \text { for } i \neq k \tag{27}\\
& A_{j}\left(1+\mu_{j} \hat{n}_{j}\right) A_{j}^{+}-A_{j}^{+}\left(1+\mu_{j}\left(\hat{n}_{j}+1\right)\right) A_{j}=1 \tag{28}\\
& A_{j} A_{k}=A_{k} A_{j} \quad A_{j}^{+} A_{k}^{+}=A_{k}^{+} A_{j}^{+} \tag{29}
\end{align*}
$$

and from (28) we have

$$
\begin{align*}
& A_{j}=\frac{1}{\sqrt{1+\mu_{j}\left(\hat{n}_{j}+1\right)}} a_{j} \quad A_{j}^{+}=a_{j}^{+} \frac{1}{\sqrt{1+\mu_{j}\left(\hat{n}_{j}+1\right)}} \tag{30}\\
& A_{j}\left|n_{1}, n_{2}, \ldots, n_{j}, \ldots\right\rangle \sqrt{\frac{n_{j}}{1+\mu_{j} n_{j}}}\left|n_{1}, n_{2}, \ldots, n_{j}-1, \ldots\right\rangle \tag{31}\\
& A_{j}^{+}\left|n_{1}, n_{2}, \ldots, n_{j}, \ldots\right\rangle=\sqrt{\frac{n_{j}+1}{1+\mu_{j}\left(n_{j}+1\right)}}\left|n_{1}, n_{2}, \ldots, n_{j}+1, \ldots\right\rangle \tag{32}\\
& A_{j}^{+} A_{j}\left|n_{1}, n_{2}, \ldots, n_{j}, \ldots\right\rangle=\frac{n_{j}}{1+\mu_{j} n_{j}}\left|n_{1}, n_{2}, \ldots, n_{j}, \ldots\right\rangle . \tag{33}
\end{align*}
$$

By using the definition

$$
\begin{equation*}
J_{+}=A_{1}^{+} A_{2} \quad J_{-}=A_{2}^{+} A_{1} \quad\left[J_{+}, J_{-}\right]=2 J_{z} \tag{34}
\end{equation*}
$$

it is easy to construct the quantum group.
Substituting the expressions (30) in (34) we obtain

$$
\begin{align*}
& J_{+}=\frac{1}{\sqrt{\left(1+\mu_{1} \hat{n}_{1}\right)\left(1+\mu_{2}\left(\hat{n}_{2}+1\right)\right)}} a_{1}^{+} a_{2} \tag{35}\\
& J_{-}=\frac{1}{\sqrt{\left(1+\mu_{1}\left(\hat{n}_{1}+1\right)\right)\left(1+\mu_{2} \hat{n}_{2}\right)}} a_{2}^{+} a_{1} \tag{36}\\
& 2 J_{z}=\frac{\left(\hat{n}_{1}-\hat{n}_{2}\right)+\mu_{1} \hat{n}_{1}\left(\hat{n}_{1}+1\right)-\mu_{2} \hat{n}_{2}\left(\hat{n}_{2}+1\right)}{\left(1+\mu_{1} \hat{n}_{1}\right)\left(1+\mu_{1}\left(\hat{n}_{1}+1\right)\right)\left(1+\mu_{2} \hat{n}_{2}\right)\left(1+\mu_{2}\left(\hat{n}_{2}+1\right)\right)} . \tag{37}
\end{align*}
$$

Furthermore, with $\hat{n}_{j}\left|n_{1} n_{2}\right\rangle=n_{j}\left|n_{1} n_{2}\right\rangle, j=1,2$, we have

$$
\begin{align*}
& J_{z}\left|n_{1}, n_{2}\right\rangle=\frac{1}{2} \frac{\left(n_{1}-n_{2}\right)+\mu_{1} n_{1}\left(n_{1}+1\right)-\mu_{2} n_{2}\left(n_{2}+1\right)}{\left(1+\mu_{1} n_{1}\right)\left(1+\mu_{1}\left(n_{1}+1\right)\right)\left(1+\mu_{2} \hat{n}_{2}\right)\left(1+\mu_{2}\left(\hat{n}_{2}+1\right)\right)}\left|n_{1}, n_{2}\right\rangle \tag{38}\\
& J_{+}\left|n_{1}, n_{2}\right\rangle=\frac{\sqrt{n_{2}\left(n_{1}+1\right)}}{\sqrt{\left(1+\mu_{2} n_{2}\right)\left(1+\mu_{1}\left(\hat{n}_{1}+1\right)\right)}}\left|n_{1}+1, n_{2}-1\right\rangle \tag{39}\\
& J_{-}\left|n_{1}, n_{2}\right\rangle=\frac{\sqrt{n_{1}\left(n_{2}+1\right)}}{\sqrt{\left(1+\mu_{1} n_{1}\right)\left(1+\mu_{2}\left(\hat{n}_{2}+1\right)\right)}}\left|n_{1}-1, n_{2}+1\right\rangle . \tag{40}
\end{align*}
$$

Similarly, we can construct the quantum group for any function $f\left(\hat{n}_{1}+2\right)$.
It is hoped that the new deformed oscillator will find applications in physics.
The author would like to thank Max-Planck-Institut für Plasmaphysik, General Theory, D-8046 Garching bei München, for kind hospitality.

References

[1] Rampacher H, Stumpf H and Wagner F 1965 Fortschr. Phys. 13385
[2] Jannussis A, Streclas A, Sourlas D and Vachos K 1977 Lett. Nuovo Cimento 19 163; 1977 Phys. Scr. 13163
[3] Saavedra I and Utreras C 1981 Phys. Lett. 98B 74
[4] Brodimas G, Jannussis A and Mignani R 1992 J. Phys. A: Math. Gen. 25 L329
[5] Jannussis A, Brodimas G, Sourlas D, Streclas A, Siafarikas P, Papaloukas L and Tsangas N 1982 Hadr. J. 51923
[6] Jannussis A 1991 Hadr. J. 14297
[7] Jannussis A, Brodimas G and Mignani R 1991 J. Phys. A: Math. Gen. 24 L775
[8] Santilli R M 1978 Hadr. J. 1754; 1978 Lie-admissible Approach to Hadron Structure vol I (Nonantum, MA: Hadronic Press); 1982 vol II
[9] Jannussis A, Brodimas G, Sourlas D and Zisis V 1981 Lett. Nuovo Cimento 30123

