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LElTER TO THE EDITOX 

New deformed Heisenberg oscillator 

A Jannussist 
Max-Planck-Institut f i r  Plasmaphysik, D-8046, Garching, Federal Republic of Germany, 
and the Institute for Basic Research, Po Box 1577, Palm Harbor, FL 34682-1577, USA 

Received 23 October 1992 

Abstract. The discrete spectrum of a deformed oscillator is calculated here for the Bnt  
time according to the non-canonical Heisenberg algebra. The spectrum extends from 
ho /Z( l+p)  to h / p ,  where p i s  a positive deformation parameter. 

It is well known that the usual (canonical) commutation relations between the position 
and momentum operators, x and p, were introduced by Heisenberg. It is less well 
known, however, that, three decades ago, Heisenberg himself proposed generalizing 
the commutation rules to a non-canonical form [I]. This new idea by Heisenberg was 
subsequently developed by some authors [2-51 and applied to various physical 
problems. 

A specific form of non-canonical commutation relation for x and p has the following 
form 

where f ( H )  is an arbitrary Hermitian function of the Hamiltonian H. 
Recently, Janussis [6] proved that the deformation Q-Lie algebra i s  a particular 

case of a Lie-admissible algebra. The time evolution of the operators of the Q-oscillators 
was derived for the first time by exploiting the connection between the Q-deformation 
algebra and the Lie-admissible algebras [7]. 

According to Santilli [XI, the new commutation rules for the Lie-admissible algebras 
have the following form: 

xTp-pRx=ihn(x,p, t, .. .) 
where T, R are suitable operators (supposed to present, in general, non-conservative 
interactions) and n(x,p, f, . . .) is the operational form of the Lie-admissible tensor. 

It can be seen from the above generalization that Heisenberg's non-canonical 
commutation relation (1) is a particular case of ( 2 )  for T = R = 1 and n(x,p, I,. . .) = 
f ( H ) .  Also the connection between quantum groups and Lie-admissible Q-algebras 
has been extensively studied in [6]. Moreover, Janusis and collaborators introduced 
the generalied commutation relation [6,7] 

(A,A+)=AA+-A+QA=F(S) (3) 

[A, i?]=A [A+, A ]  = -A+ (4) 

where r7 is the usual number operator Ii?ln)= nln) satisfying the commutation rules 
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and F(n^) is a suitable function. In the same way we can study the Lie-admissible 
commutation relation 

(A,A+)=AT(n*)A+-A+R(fi)A= 1 ( 5 )  
where the operators T(8) and R ( 6 )  are Hermitian. In the present letter we study the 
cases 

T(n^)=f(n*+ 1 )  R(  A)  = Qf( n̂  + 2) (6)  
wheref(n^+I) is a suitable function and (QE[-~,+co], Q$O). 

We apply the bosonization method [5 ,9]  and seek A, A+ in the form 

A =  G(n^+ 1)a A+ = a+G(A+ 1) (7) 
and a, a+, a+a = 6 are boson operators satisfying the usual commutation relations. 
Then, from (6) we get for the operator G($ 

(a+ l)f(A+2)GZ(n^+ 1)- Qn f̂(n^+ l)GZ(n*) = 1. (8) 
The solution of the above equation has the form 

pir 
n* + l)f( ii + 2) 

G(i i+l)= 

and the relations (7) yield 

where 
QK-1  [IC]=-. 
Q - 1  

From the above relations we obtain 

AA'=- [ii+l] A+A=- 121 
f(n^+2) f(n^+1) 

[n^+l] [ri] 
f ( n + 2 )  f(n^+l) 

[A, A+] = --- 

[n*+I] [??I 
f ( n + 2 )  f ( n + l )  

{A, A'} = AA' + A'A = -+-. 
Jannussis et a1 [ 5 ] ,  the Fock representation c - 

the forms of A, A+ reads in this case 

. = : J m ( A + A + )  2 m o  

i 
2 

p = - - J h m o ( ~ + i )  (A-A+) 

According 

(11) 

(12) 

(12a) 

: operators x and p in 

(13) 

(14) 

and the Hamilton operator of the harmonic oscillator takes the form 

(15) H = - + - U  P2 m 2 x 1 -  - *o(Q+1) (AA++A+A). 
2m 2 4 

Furthermore, the operators A'A and n̂  commute, i.e. 

[A'A, A] = 0 
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and have the common basis In), (Zln)= 8,. of bosons. Acting on In) with A and A+ gives 

and for f ( K )  # 0, K = 1 , 2 , .  . . the operators A and A’ are exactly annihilation and 
creation operators. From (12a)  and (15) we obtain the eigenvalues of the Hamiltonian 
operator H, i.e. 

which in the case f(n^+l)=l  reduces to the spectrum of the Q-harmonic oscillator 
[S,  91. Also from (20)  we obtain for Q = 1 the eigenvalues 

An interesting case is f (n  + 1 )  = 1 +pn, p> 0 ,  for which the eigenvalues take the form 

In the following, we will call the above oscillator the ‘deformed Heisenberg oscillator’, 
since its discrete spectrum’extends from the ground energy Eo= h w / 2 ( 1 + p )  to the 
upper limit energy E,= hwlp.  

To our knowledge, this is the first time where an oscillator spectrum bounded from 
above is presented. The nature of the above spectrum is a direct consequence of the 
introduction of the parameter p in the non-canonical commutation relation of the 
deformed Heisenberg algebra. The operator 

takes the following form (for n^= Ho/hw -+): 

(24) 
H o / h w + $  Hof hw -4 

H = @ (  + 
2 l + p ( H o / h w + $ )  l + p ( H , 1 h w - $ )  

where Ho= ho(n^+f) is the Hamiltonian of the usual harmonic oscillator. 
After some algebra the commutator of the operators x and p can be written 

which is a particular case of the non-canonical commutation relation ( 1 ) .  The above 
commutation for p = 0 reduces exactly to the usual canonical form. 
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Before constructing the corresponding quantum group we generalize the commuta- 
tion relation (25) to n dimensions, i.e. 

Aj(1 +pJ8jk2,)Al-AL( 1 +&8jr;(&+ 1))Aj = 8,. 

From the above relations we obtain 

A,A: = A:A, f o r i f k  

A,(I +p,~J)~;-~;(i+pJ(i ,  + i ) ) ~ ,  = 1 

A,Ah = AhA, A;A: = A:A; 

and from (28) we have 

1 A + = = +  1 
I ,  aj J1+pj(2J+l) 

A, = 
J1 +Pj(2, + 1) 

A,lnl, n2 ,..., n , , . .  .)d"- In,, n, ,  . . . , n, - 1,. . .) 1 + &itj 

n,+ 1 
A; ln , ,n ,  ,..., n,,. ..)=J In,, n,, . . . , f l ,  + 1,. , .) 

1 + @,( "1 + 1) 
n 

A;Ajlnl, n,, . . . , nj, . ..)=I- Ill,, n 2 , .  . . , n,,. . .). ' + pJ"> 

By using the definition 

J+ = A : A ~  J_=A:A, [I+, J-] = 2Jz 

it is easy to construct the quantum group. 
Substituting the expressions (30) in (34) we obtain 

Furthermore, with i?,[nln,)=njlnln2}, j = l , 2 ,  we have 

Similarly, we can construct the quantum group for any function f(Gl +2) .  
It is hoped that the new deformed oscillator will find applications in physics. 

The author would like to thank Max-Planck-Institut fur Plasmaphysik, General Theory, 
D-8046 Garching bei Miinchen, for kind hospitality. 
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